Topologia infinito-dimensionale degli spazi di funzioni: Volume 64

Punteggio:   (5,0 su 5)

Topologia infinito-dimensionale degli spazi di funzioni: Volume 64 (J. Van Mill)

Recensioni dei lettori

Attualmente non ci sono recensioni dei lettori. La valutazione si basa su 2 voti.

Titolo originale:

The Infinite-Dimensional Topology of Function Spaces: Volume 64

Contenuto del libro:

In questo libro si studiano spazi di funzioni a bassa complessità Borel. Per lo studio di questi spazi vengono utilizzate principalmente tecniche di topologia generale, topologia infinito-dimensionale, analisi funzionale e teoria descrittiva degli insiemi.

Il mix di metodi provenienti da diverse discipline rende l'argomento particolarmente interessante. Tra le altre cose, viene presentata una prova completa e autocontenuta del teorema di Dobrowolski-Marciszewski-Mogilski, secondo cui tutti gli spazi di funzioni di bassa complessità Borel sono topologicamente omeomorfi. Per capire cosa sta succedendo, è necessario un solido background in topologia infinito-dimensionale.

Per questo è necessaria una discreta conoscenza della teoria delle dimensioni e della teoria ANR.

Il materiale necessario è stato parzialmente trattato nel nostro precedente libro Topologia infinito-dimensionale, prerequisiti e introduzione'. Una selezione di ciò che è stato fatto in quel libro si trova anche qui, ma completamente rivisto e in molti punti ampliato con risultati recenti.

È stato scelto un percorso "panoramico" verso il teorema di Dobrowolski-Marciszewski-Mogilski, collegando i risultati necessari per la sua dimostrazione a interessanti sviluppi di ricerca recenti nella teoria delle dimensioni e nella topologia infinito-dimensionale. I primi cinque capitoli di questo libro sono pensati come testo per i corsi di laurea in topologia. Per un corso di teoria delle dimensioni, i capitoli 2 e 3 e parte del capitolo 1 dovrebbero essere trattati.

Per un corso di topologia infinito-dimensionale, i capitoli 1, 4 e 5. Nel capitolo 6, che tratta degli spazi di funzioni, vengono discussi i risultati di ricerche recenti. Il libro potrebbe essere utilizzato anche per un corso di laurea in topologia, ma il suo sapore è più quello di una monografia di ricerca che di un libro di testo; è quindi più adatto come testo per un seminario di ricerca.

Il libro ha quindi il carattere sia di libro di testo che di monografia di ricerca. Nei capitoli da 1 a 5, se non diversamente specificato, tutti gli spazi in discussione sono separabili e metrizzabili.

Nel Capitolo 6 vengono presentati risultati per classi più generali di spazi. Nell'Appendice A sono stati raccolti, per una facile consultazione, alcuni fatti fondamentali che sono importanti nel libro. Il libro non è inteso come base per un corso di topologia; il suo scopo è quello di raccogliere conoscenze sulla topologia generale.

Gli esercizi del libro hanno tre scopi: 1) verificare la comprensione del materiale da parte del lettore 2) fornire prove di affermazioni utilizzate nel testo, ma non dimostrate3) fornire informazioni aggiuntive non trattate nel testo.

Nell'Appendice B sono state inserite le soluzioni di alcuni esercizi. Questi esercizi sono importanti o difficili.

Altre informazioni sul libro:

ISBN:9780444505576
Autore:
Editore:
Lingua:inglese
Rilegatura:Copertina rigida
Anno di pubblicazione:2001
Numero di pagine:642

Acquisto:

Attualmente disponibile, in magazzino.

Lo compro!

Altri libri dell'autore:

Topologia infinito-dimensionale: Prerequisiti e introduzione Volume 43 - Infinite-Dimensional...
La prima parte di questo libro è un testo per...
Topologia infinito-dimensionale: Prerequisiti e introduzione Volume 43 - Infinite-Dimensional Topology: Prerequisites and Introduction Volume 43
Topologia infinito-dimensionale degli spazi di funzioni: Volume 64 - The Infinite-Dimensional...
In questo libro si studiano spazi di funzioni a bassa...
Topologia infinito-dimensionale degli spazi di funzioni: Volume 64 - The Infinite-Dimensional Topology of Function Spaces: Volume 64

Le opere dell'autore sono state pubblicate dai seguenti editori:

© Book1 Group - tutti i diritti riservati.
Il contenuto di questo sito non può essere copiato o utilizzato, né in parte né per intero, senza il permesso scritto del proprietario.
Ultima modifica: 2024.11.08 20:28 (GMT)